← Back to Home
Getting Started with hippocampus.md
Set up context lifecycle management in your AI agent in under 10 minutes.
Prerequisites
- ✓OpenClaw with Pi agent — hippocampus.md is a Pi extension
- ✓Node.js/TypeScript support — for the extension runtime
- ✓Basic understanding of AI agent context — what tokens are, why context size matters
1
Download the Extension
Copy the hippocampus.ts extension file to your Pi extensions directory:
# Option A: Clone this repo and copy git clone https://github.com/starvex/hippocampus-md.git cp hippocampus-md/extension/hippocampus.ts ~/.pi/extensions/ # Option B: Download directly curl -o ~/.pi/extensions/hippocampus.ts \ https://raw.githubusercontent.com/starvex/hippocampus-md/main/extension/hippocampus.ts
2
Configure Compaction Mode
Critical: Set your Pi agent to use "default" compaction mode (NOT "safeguard"):
// ~/.pi/config.json
{
"compaction_mode": "default"
}The "safeguard" mode bypasses extension hooks, preventing hippocampus.md from working.
3
Restart & Verify
# Restart Pi agent openclaw gateway restart # Check the hippocampus log tail -f ~/.pi/hippocampus.log # You should see: # [hippocampus] 🧠 hippocampus.md extension loaded
Configuration
hippocampus.md works out-of-the-box with sensible defaults. Tune for your use case:
const CONFIG = {
// Per-type decay rates (lower = remembers longer)
decayRates: {
decision: 0.03, // decisions persist ~30× longer
user_intent: 0.05, // user goals persist ~20× longer
context: 0.12, // general context — standard decay
tool_result: 0.20, // tool outputs decay fast
ephemeral: 0.35, // heartbeats/status — decay very fast
},
sparseThreshold: 0.25, // below this → pointer only
compressThreshold: 0.65, // below this → compressed summary
retentionFloor: { // minimum retention per type
decision: 0.50, // decisions never drop below 0.50
user_intent: 0.35, // user goals never drop below 0.35
},
maxSparseIndexTokens: 2500, // max tokens for sparse index
summaryModel: "gemini-2.5-flash", // cheap model for classification
debug: true, // verbose logging
};Understanding Decay Rates
Decay rates control how fast different content types lose strength:
| Type | Rate | Half-life | Example |
|---|---|---|---|
| decision | 0.03 | ~46 turns | "I'll deploy using Vercel" |
| user_intent | 0.05 | ~28 turns | "Build me a login system" |
| context | 0.12 | ~12 turns | Normal conversation |
| tool_result | 0.20 | ~7 turns | File reads, API responses |
| ephemeral | 0.35 | ~4 turns | Heartbeats, status checks |
Lower rates = longer persistence.
Understanding Thresholds
Strength 1.0 ████████████████████ Full content
0.65 ████████████▓▓▓▓▓▓▓▓ ← compressThreshold
0.25 █████▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓ ← sparseThreshold
0.0 ▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓ Dropped from contextAbove 0.65
Full content stored
0.25 - 0.65
Compressed summary
Below 0.25
Sparse pointer only
Architecture
┌─────────────────────────────────────────────────────────────┐
│ CONTEXT WINDOW │
│ ┌─────────────────────────────────────────────────────┐ │
│ │ HIPPOCAMPUS INDEX │ │
│ │ ┌─────────────┐ ┌─────────────┐ ┌─────────────┐ │ │
│ │ │ Entry A │ │ Entry B │ │ Entry C │ │ │
│ │ │ str: 0.92 │ │ str: 0.45 │ │ str: 0.12 │ │ │
│ │ │ type: dcsn │ │ type: tool │ │ type: tool │ │ │
│ │ └─────────────┘ └─────────────┘ └─────────────┘ │ │
│ │ │ │
│ │ Active context: ~5,000 tokens (index only) │ │
│ └─────────────────────────────────────────────────────┘ │
└─────────────────────────────────────────────────────────────┘
│ pattern completion
▼
┌─────────────────────────────────────────────────────────────┐
│ EXTERNAL SOURCES │
│ ┌──────────┐ ┌──────────┐ ┌──────────┐ ┌──────────┐ │
│ │ memory │ │ cache │ │ API │ │ browser │ │
│ │ decisions│ │ file │ │ config │ │ snapshot │ │
│ └──────────┘ └──────────┘ └──────────┘ └──────────┘ │
│ Retrievable: ~500,000 tokens │
└─────────────────────────────────────────────────────────────┘Tuning for Use Cases
Long Sessions
For agents running for hours:
sparseThreshold: 0.15 tool_result: 0.30 ephemeral: 0.50
Tool-Heavy
For many tool calls:
tool_result: 0.25 decision floor: 0.60 user_intent floor: 0.45
Sensitive Data
Preserve user context:
user_intent floor: 0.40 priority: "high" for critical entries
Debug Mode
For development:
debug: true sparseThreshold: 0.35 compressThreshold: 0.75
Expected Results
16.6×
Compression
89%
Retrieval Success
~10ms
Per-Turn Overhead
0
Data Lost
Next Steps
Part of the Agent Brain Architecture
defrag.md • synapse.md • hippocampus.md • neocortex.md
Happy memory management! 🧠